organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6-Allyl-8-methoxy-3-phenyl-3,4-dihydro-2*H*-benzo[e][1,3]oxazine

Jing Zhu,* Zhi-Dong Ren, Yang Liu, Lei Zhao and Yong Wu

School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China Correspondence e-mail: jingzhuhaut@126.com

Received 27 June 2011; accepted 8 July 2011

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.047; wR factor = 0.137; data-to-parameter ratio = 13.9.

In the title compound, $C_{18}H_{19}NO_2$, the allyl group is disordered over two sets of sites [occupancy ratio 0.662 (4):0.338 (4)]. The dihedral angle between the phenyl and benzene rings is 87.44 (10)°. The oxazinane ring adopts a sofa conformation.

Related literature

For similar heterocyclic compounds, see: Chen *et al.* (2007); Kiskan *et al.* (2007); Liu *et al.* (2007); Ran & Gu (2011); Sawaryn *et al.* (2010); Su *et al.* (2005). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data C₁₈H₁₉NO₂

 $M_r = 281.34$

a = 8.408/(5) A	Z = 2
b = 9.4852(5) Å	Cu $K\alpha$ radiation
c = 10.7735 (7) Å	$\mu = 0.65 \text{ mm}^{-1}$
$\alpha = 99.193 \ (5)^{\circ}$	T = 291 K
$\beta = 98.900 \ (5)^{\circ}$	$0.20 \times 0.18 \times 0.18 \text{ mm}$
$\gamma = 115.476 \ (6)^{\circ}$	
Data collection	
Oxford Diffraction Xcalibur, Fos	5471 measured reflections
Gemini diffractometer	2644 independent reflections
Absorption correction: multi-scan	2282 reflections with $I > 2\sigma(I)$
(Crys Alis PRO: Oxford	$R_{\rm c} = 0.015$
Diffraction 2010)	$n_{\rm int} = 0.015$
Diffaction, 2010)	

 $T_{\min} = 0.659, \ T_{\max} = 1.000$

S = 1.05

2644 reflections

Triclinic, $P\overline{1}$

Refinement $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.137$

190 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.48~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.50~e~{\rm \AA}^{-3} \end{split}$$

V = 741.30 (9) Å³

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2360).

References

Chen, X.-L., Diao, X.-J. & Wu, M.-H. (2007). Acta Cryst. E63, 03580.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Kiskan, B., Yagci, Y., Sahmetlioglu, E. & Toppare, L. (2007). J. Polym. Sci. Part A Polym. Chem. 45, 999–1006.
- Liu, Y.-L., Hsu, C.-W. & Chou, C.-I. (2007). J. Polym. Sci. Part A Polym. Chem. 45, 1007–1015.
- Oxford Diffraction (2010). CrysAlis PRO . Oxford Diffraction Ltd, Yarnton, England.
- Ran, Q.-C. & Gu, Y. (2011). J. Polym. Sci. Part A Polym. Chem. 49, 1671–1677.Sawaryn, C., Landfester, K. & Taden, A. (2010). Macromolecules, 43, 8933– 8941.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Su, Y.-C., Yei, D.-R. & Chang, F.-C. (2005). J. Appl. Polym. Sci. 95, 730-737.

supplementary materials

Acta Cryst. (2011). E67, o2056 [doi:10.1107/S1600536811027474]

6-Allyl-8-methoxy-3-phenyl-3,4-dihydro-2*H*-benzo[*e*][1,3]oxazine

J. Zhu, Z.-D. Ren, Y. Liu, L. Zhao and Y. Wu

Comment

Benzo[*e*][1,3]oxazines, which can be cured *via* a thermal ring opening reaction to construct an analogous phenolic structure characterized by a Mannich base bridge (–CH2—NR—CH2), are an important class of heterocycles (Su *et al.*, 2005, Kiskan *et al.*, 2007; Liu *et al.*, 2007, Ran & Gu, 2011, Sawaryn *et al.*, 2010). The title compound (I) was prepared by reaction of aniline, formaldehyde and 4-allyl-2-methoxyphenol. We report here the crystal structure of (I).

The molecular structure of title compound (I) is showing in Fig. 1. The dihedral angle between the phenyl and benzene rings is 87.44 (10)° and this value is longer than similar compound reported by Chen *et al.*, 2007. The allyl group was refined using a disorder model with an occupancy ratio of 0.662 (4):0.338 (4). The oxazinane ring of the benzoxazine moiety adopts the sofa conformation, with the puckering parameters $q_2 = 0.3505$ (16) Å and $\varphi = 272.3$ (3)° (Cremer & Pople, 1975).

Experimental

Aniline (0.05 mol), formaldehyde (0.1 mol), 4-allyl-2-methoxyphenol (0.05 mol) and 1,4-dioxine (50 ml) were introduced into a 250 ml flask, and the mixtures were stirred at 60 °C for 5 h, then condensed by rotary evaporators (35 °C), a red mucus was got and set at 15 °C for a few hour. The title compound was precipitated out in the meantime and washed by methanol. Colourless crystals suitable for X-ray diffraction analysis were obtained by recrystallization from methanol. And then the crystal of title compound was mounted in inert oil and transferred to the cold gas stream of the diffractometer.

Refinement

All H atoms were placed in geometrically calculated positions with C—H = 0.93 Å and were refined isotropic with $U_{iso}(H)$ = $1.2U_{eq}(C)$ of parent atom using a riding model.

Atoms C16 of the allyl group is disordered and was refined using a disorder model with site occupancy factors of 0.662(4) and 0.338(4). The corresponding bond distances in the disordered groups were restrained to be equal.

Figures

Fig. 1. Molecular structure of (I), with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Only the major occupied component is shown.

6-Allyl-8-methoxy-3-phenyl-3,4-dihydro-2H-benzo[e][1,3]oxazine

Crystal data

$C_{18}H_{19}NO_2$	Z = 2
$M_r = 281.34$	F(000) = 300
Triclinic, PT	$D_{\rm x} = 1.260 {\rm ~Mg~m}^{-3}$
a = 8.4087 (5) Å	Cu K α radiation, $\lambda = 1.5418$ Å
b = 9.4852 (5) Å	Cell parameters from 3645 reflections
c = 10.7735 (7) Å	$\theta = 4.3 - 71.9^{\circ}$
$\alpha = 99.193 (5)^{\circ}$	$\mu = 0.65 \text{ mm}^{-1}$
$\beta = 98.900 \ (5)^{\circ}$	T = 291 K
$\gamma = 115.476 \ (6)^{\circ}$	Prismatics, colourless
$V = 741.30 (9) \text{ Å}^3$	$0.20\times0.18\times0.18~mm$

Data collection

Oxford Diffraction Xcalibur, Eos, Gemini diffractometer	2644 independent reflections
Radiation source: Enhance (Cu) X-ray Source	2282 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.015$
Detector resolution: 16.2312 pixels mm ⁻¹	$\theta_{\text{max}} = 67.1^{\circ}, \ \theta_{\text{min}} = 4.3^{\circ}$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan CrysAlis PRO (Oxford Diffraction, 2010)	$k = -11 \rightarrow 8$
$T_{\min} = 0.659, T_{\max} = 1.000$	$l = -12 \rightarrow 11$
5471 measured reflections	

Refinement

Refinement on F^2	Secondary atom site
Least-squares matrix: full	Hydrogen site locat sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters
$wR(F^2) = 0.137$	$w = 1/[\sigma^2(F_o^2) + (0)]$ where $P = (F_o^2 + 2)$
<i>S</i> = 1.05	$(\Delta/\sigma)_{max} < 0.001$
2644 reflections	$\Delta \rho_{\text{max}} = 0.48 \text{ e} \text{ Å}^{-3}$
190 parameters	$\Delta \rho_{\rm min} = -0.50 \ {\rm e} \ {\rm \AA}^-$
0 restraints	Extinction correction Fc [*] =kFc[1+0.001x]
Primary atom site location: structure-invariant direct	

P methods

te location: difference Fourier map tion: inferred from neighbouring constrained $(0.0696P)^2 + 0.1724P$ $F_{\rm c}^{2})/3$ -3 on: SHELXL, ${\rm Fc}^2\lambda^3/{\rm sin}(2\theta)]^{-1/4}$

Extinction coefficient: 0.0088 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ Occ. (<1) \boldsymbol{Z} х y 01 0.0489 (3) 0.42456 (15) 0.62744 (13) 0.74629 (10) 02 0.70231 (17) 0.91501 (15) 0.80687 (12) 0.0603 (4) N1 0.0462 (3) 0.16240 (18) 0.42342 (15) 0.79032 (13) C1 0.80579 (17) -0.0068(2)0.5813(2)0.0524(4)H10.0679 0.6433 0.8878 0.063* C2 -0.1479(3)0.6089(3)0.7517(2)0.0664(5)H2 0.6888 0.7980 0.080* -0.1677C3 -0.2584(3)0.5198 (3) 0.0721 (6) 0.6308 (2) H3 0.5950 0.087* -0.35280.5391 C4 -0.2286(3)0.4014 (3) 0.5626(2) 0.0708 (6) 0.085* H4 -0.30280.3410 0.4801 C5 -0.0896(2)0.3719(2) 0.61587 (17) 0.0579 (5) Н5 0.070* -0.07130.2911 0.5693 C6 0.0235 (2) 0.46179 (18) 0.73834 (15) 0.0439 (4) C7 0.3052(2) 0.45678 (19) 0.72467 (17) 0.0494 (4) H7A 0.2516 0.4097 0.6322 0.059* H7B 0.7539 0.059* 0.3766 0.4053 C8 0.0495 (4) 0.2421 (2) 0.4814(2)0.93066 (16) H8A 0.2835 0.4084 0.9594 0.059* H8B 0.1492 0.9743 0.059* 0.4807 C9 0.4001 (2) 0.65000 (19) 0.96899 (15) 0.0443 (4) C10 0.4830(2) 0.71108 (19) 0.87442 (15) 0.0433 (4) C11 0.6315(2) 0.86659 (19) 0.90761 (16) 0.0475 (4) C12 0.6934 (2) 0.9570(2) 1.03462 (18) 0.0555 (4) H12 0.7927 1.0595 1.0567 0.067* C13 0.6105 (3) 0.8981 (2) 1.13087 (17) 0.0566 (4) C14 0.4646(2)0.7445(2)1.09664 (16) 0.0517 (4) H14 0.4085 0.7035 1.1599 0.062* C15 0.6797 (5) 1.0036 (3) 1.2695 (2) 0.0958 (6) H15A 0.7676 1.1113 1.2695 0.115* 0.662(4)H15B 0.5782 1.0117 1.2961 0.115* 0.662 (4) H15C 0.8114 1.0521 1.2917 0.115* 0.338 (4) H15D 0.6483 1.0908 1.2695 0.115* 0.338 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C16	0.7611 (5)	0.9503 (4)	1.3628 (3)	0.0737 (8)	0.662 (4)
H16	0.8657	0.9456	1.3499	0.088*	0.662 (4)
C17	0.7103 (4)	0.9065 (3)	1.4652 (2)	0.0958 (6)	
H17A	0.6068	0.9083	1.4840	0.115*	0.662 (4)
H17B	0.7776	0.8736	1.5192	0.115*	0.662 (4)
H17C	0.8326	0.9343	1.4744	0.115*	0.338 (4)
H17D	0.6501	0.8585	1.5244	0.115*	0.338 (4)
C18	0.8505 (3)	1.0730 (2)	0.8341 (2)	0.0700 (6)	
H18A	0.8854	1.0930	0.7554	0.105*	
H18B	0.9516	1.0816	0.8959	0.105*	
H18C	0.8144	1.1509	0.8692	0.105*	
C16A	0.6213 (10)	0.9354 (8)	1.3672 (6)	0.0737 (8)	0.338 (4)
H16A	0.4995	0.9041	1.3648	0.088*	0.338 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0500 (6)	0.0476 (6)	0.0440 (6)	0.0192 (5)	0.0114 (5)	0.0092 (5)
O2	0.0589 (7)	0.0502 (7)	0.0648 (8)	0.0165 (6)	0.0224 (6)	0.0160 (6)
N1	0.0484 (7)	0.0398 (7)	0.0461 (7)	0.0182 (6)	0.0075 (6)	0.0107 (5)
C1	0.0509 (9)	0.0496 (9)	0.0533 (9)	0.0213 (7)	0.0117 (7)	0.0117 (7)
C2	0.0639 (11)	0.0742 (13)	0.0799 (14)	0.0418 (10)	0.0281 (10)	0.0305 (10)
C3	0.0525 (11)	0.1021 (16)	0.0756 (13)	0.0392 (11)	0.0188 (10)	0.0464 (12)
C4	0.0531 (10)	0.0885 (15)	0.0530 (10)	0.0197 (10)	0.0013 (8)	0.0223 (10)
C5	0.0553 (10)	0.0554 (10)	0.0493 (9)	0.0174 (8)	0.0063 (8)	0.0086 (8)
C6	0.0414 (8)	0.0380 (7)	0.0461 (8)	0.0119 (6)	0.0106 (6)	0.0142 (6)
C7	0.0531 (9)	0.0434 (8)	0.0519 (9)	0.0244 (7)	0.0114 (7)	0.0085 (7)
C8	0.0511 (9)	0.0496 (9)	0.0475 (9)	0.0219 (7)	0.0091 (7)	0.0192 (7)
C9	0.0443 (8)	0.0465 (8)	0.0451 (8)	0.0246 (7)	0.0063 (6)	0.0143 (6)
C10	0.0429 (8)	0.0445 (8)	0.0443 (8)	0.0238 (7)	0.0069 (6)	0.0102 (6)
C11	0.0465 (8)	0.0436 (8)	0.0556 (9)	0.0235 (7)	0.0114 (7)	0.0144 (7)
C12	0.0540 (10)	0.0418 (8)	0.0602 (10)	0.0184 (7)	0.0027 (8)	0.0086 (7)
C13	0.0676 (11)	0.0496 (9)	0.0498 (9)	0.0309 (8)	0.0024 (8)	0.0066 (7)
C14	0.0618 (10)	0.0556 (10)	0.0444 (9)	0.0331 (8)	0.0108 (7)	0.0159 (7)
C15	0.1375 (17)	0.0678 (10)	0.0570 (9)	0.0373 (11)	0.0030 (10)	0.0026 (8)
C16	0.0783 (19)	0.0780 (18)	0.0525 (14)	0.0396 (17)	-0.0006 (14)	-0.0091 (13)
C17	0.1375 (17)	0.0678 (10)	0.0570 (9)	0.0373 (11)	0.0030 (10)	0.0026 (8)
C18	0.0596 (11)	0.0532 (10)	0.0888 (15)	0.0155 (9)	0.0242 (10)	0.0226 (10)
C16A	0.0783 (19)	0.0780 (18)	0.0525 (14)	0.0396 (17)	-0.0006 (14)	-0.0091 (13)

Geometric parameters (Å, °)

O1—C7	1.4463 (19)	C10—C11	1.404 (2)
O1—C10	1.3716 (18)	C11—C12	1.378 (2)
O2—C11	1.367 (2)	C12—H12	0.9300
O2—C18	1.423 (2)	C12—C13	1.395 (3)
N1—C6	1.427 (2)	C13—C14	1.384 (3)
N1—C7	1.432 (2)	C13—C15	1.524 (3)
N1—C8	1.463 (2)	C14—H14	0.9300

C1—H1	0.9300	C15—H15A	0.9700
C1—C2	1.384 (3)	C15—H15B	0.9700
C1—C6	1.387 (2)	C15—H15C	0.9700
С2—Н2	0.9300	C15—H15D	0.9700
C2—C3	1.368 (3)	C15—C16	1.408 (4)
С3—Н3	0.9300	C15—C16A	1.368 (8)
C3—C4	1.379 (3)	C16—H16	0.9300
C4—H4	0.9300	C16—C17	1.308 (4)
C4—C5	1.378 (3)	C17—H17A	0.9300
С5—Н5	0.9300	С17—Н17В	0.9300
C5—C6	1.388 (2)	С17—Н17С	0.9300
С7—Н7А	0.9700	C17—H17D	0.9300
С7—Н7В	0.9700	C17—C16A	1.332 (7)
C8—H8A	0.9700	C18—H18A	0.9600
C8—H8B	0.9700	C18—H18B	0.9600
C8—C9	1.511 (2)	C18—H18C	0.9600
C9—C10	1.386 (2)	C16A—H16A	0.9300
C9—C14	1.395 (2)		
C10—O1—C7	113.65 (12)	C13—C14—C9	121.22 (16)
C11—O2—C18	117.67 (15)	C13—C14—H14	119.4
C6—N1—C7	115.33 (13)	C13—C15—H15A	108.3
C6—N1—C8	117.51 (13)	C13—C15—H15B	108.3
C7—N1—C8	109.17 (13)	C13—C15—H15C	107.5
C2—C1—H1	119.9	C13—C15—H15D	107.5
C2—C1—C6	120.30 (17)	H15A—C15—H15B	107.4
С6—С1—Н1	119.9	H15A—C15—H15C	51.2
C1—C2—H2	119.6	H15A—C15—H15D	57.7
C3—C2—C1	120.71 (19)	H15B—C15—H15C	142.9
С3—С2—Н2	119.6	H15B—C15—H15D	52.4
С2—С3—Н3	120.3	H15C—C15—H15D	107.0
C2—C3—C4	119.46 (18)	C16—C15—C13	115.9 (2)
С4—С3—Н3	120.3	C16-C15-H15A	108.3
C3—C4—H4	119.8	C16—C15—H15B	108.3
C5—C4—C3	120.37 (18)	C16—C15—H15C	63.0
C5—C4—H4	119.8	C16—C15—H15D	136.5
С4—С5—Н5	119.7	C16A—C15—C13	119.2 (3)
C4—C5—C6	120.62 (18)	C16A—C15—H15A	132.4
С6—С5—Н5	119.7	C16A—C15—H15B	61.8
C1C6N1	123.14 (14)	C16A—C15—H15C	107.5
C1—C6—C5	118.54 (16)	C16A—C15—H15D	107.5
C5—C6—N1	118.30 (15)	C16A—C15—C16	48.1 (3)
O1—C7—H7A	108.9	C15—C16—H16	115.5
O1—C7—H7B	108.9	C17—C16—C15	129.1 (3)
N1—C7—O1	113.26 (13)	C17—C16—H16	115.5
N1—C7—H7A	108.9	С16—С17—Н17А	120.0
N1—C7—H7B	108.9	C16—C17—H17B	120.0
H7A—C7—H7B	107.7	C16—C17—H17C	70.0
N1—C8—H8A	109.1	C16—C17—H17D	167.1
N1—C8—H8B	109.1	C16—C17—C16A	50.8 (4)

supplementary materials

112.41 (13)	H17A—C17—H17B	120.0
107.9	H17A—C17—H17C	159.0
109.1	H17A—C17—H17D	53.8
109.1	H17B—C17—H17C	53.8
118.78 (14)	H17B—C17—H17D	67.4
119.50 (15)	H17C—C17—H17D	120.0
121.72 (15)	С16А—С17—Н17А	69.9
122.98 (14)	С16А—С17—Н17В	167.4
117.02 (14)	С16А—С17—Н17С	120.0
119.99 (15)	C16A—C17—H17D	120.0
115.13 (14)	O2-C18-H18A	109.5
125.52 (15)	O2-C18-H18B	109.5
119.36 (16)	O2-C18-H18C	109.5
119.3	H18A—C18—H18B	109.5
121.45 (16)	H18A—C18—H18C	109.5
119.3	H18B—C18—H18C	109.5
119.89 (19)	C15—C16A—H16A	114.7
118.48 (16)	C17—C16A—C15	130.5 (6)
121.63 (19)	C17—C16A—H16A	114.7
119.4		
-1.0(2)	C8—C9—C14—C13	179.36 (15)
178.79 (14)	C9—C10—C11—O2	-179.74 (13)
179.05 (15)	C9—C10—C11—C12	0.1 (2)
-17.6 (2)	C10—O1—C7—N1	47.99 (18)
162.77 (14)	C10-C9-C14-C13	-0.3(2)
0.1 (3)	C10-C11-C12-C13	-0.7(3)
-177.76 (15)	C11—C12—C13—C14	0.9 (3)
0.4 (2)	C11—C12—C13—C15	-178.27 (19)
0.4 (3)	C12—C13—C14—C9	-0.4 (3)
-0.6 (3)	C12-C13-C15-C16	-113.3 (3)
178.38 (16)	C12-C13-C15-C16A	-167.9 (4)
0.2 (3)	C13—C15—C16—C17	-117.6 (3)
71.23 (17)	C13—C15—C16A—C17	110.4 (6)
-87.32 (17)	C14—C9—C10—O1	-178.21 (13)
-0.5 (3)	C14—C9—C10—C11	0.4 (2)
-16.4(2)	C14—C13—C15—C16	67.6 (4)
164.92 (13)	C14—C13—C15—C16A	13.0 (5)
-114.38 (17)	C15—C13—C14—C9	178.77 (18)
67.48 (18)	C15—C16—C17—C16A	10.4 (4)
46.45 (17)	C16—C15—C16A—C17	10.5 (4)
16.6 (2)	C16—C17—C16A—C15	-10.9(4)
-161.52 (14)	C18—O2—C11—C10	178.62 (15)
-63.64 (17)	C18—O2—C11—C12	-1.2 (2)
2.1 (2)	C16A—C15—C16—C17	-10.5 (4)
-179 22 (13)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	112.41 (13) 107.9 109.1 109.1 118.78 (14) 119.50 (15) 121.72 (15) 122.98 (14) 117.02 (14) 119.99 (15) 115.13 (14) 125.52 (15) 119.36 (16) 119.3 121.45 (16) 119.3 119.89 (19) 118.48 (16) 121.63 (19) 119.4 -1.0 (2) 178.79 (14) 179.05 (15) -17.6 (2) 162.77 (14) 0.1 (3) -177.76 (15) 0.4 (2) 0.4 (3) -0.6 (3) 178.38 (16) 0.2 (3) 71.23 (17) -87.32 (17) -87.32 (17) -0.5 (3) -16.4 (2) 164.92 (13) -114.38 (17) 67.48 (18) 46.45 (17) 16.6 (2) -161.52 (14) -63.64 (17) 2.1 (2) -179.22 (13)	112.41 (13) H17A—C17—H17B 107.9 H17A—C17—H17C 109.1 H17A—C17—H17D 109.1 H17B—C17—H17D 118.78 (14) H17B—C17—H17D 119.50 (15) H17C—C17—H17D 121.72 (15) C16A—C17—H17A 122.98 (14) C16A—C17—H17A 122.98 (14) C16A—C17—H17D 117.02 (14) C16A—C17—H17D 115.13 (14) O2—C18—H18A 125.52 (15) O2—C18—H18B 119.3 H18A—C18—H18C 119.3 H18A—C18—H18C 119.3 H18B—C18—H18C 119.3 H18B—C18—H18C 119.3 H18B—C18—H18C 119.4 C16—C16—C15 121.63 (19) C17—C16A—H16A 119.4 C9—C10—C11—C12 178.79 (14) C9—C10—C11—C12 179.05 (15) C9—C14—C13 0.1 (3) C10—C12—C13 177.76 (15) C11—C12—C13—C14 0.4 (2) C11—C12—C13—C15 0.4 (3) C12—C13—C15—C16 0.4 (3) C12—C13—C15—C16 0.4 (3) C12—C13—C15—C16

